Related literature. Two structures of the glycinato nickel compounds [diaquabis(glycinato-O,N)nickel(II) (Castellano, Nascimento \& Calvo, 1982); bis(glycinato- N, O)(2,2'-bipyridyl- N, N^{\prime})nickel(II) $5 \cdot 5$ hydrate (Žák, Głowiak, Kameníček \& Březina, 1990)] are known. The coordination polyhedron around Ni can be approximated as an octahedron formed by the glycine Ol atom and by five water O atoms characterized by an average $\mathrm{Ni}-\mathrm{O}$ distance of 2.056 (6) \AA and $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ angle of 90 (2) ${ }^{\circ}$ (with e.s.d.'s of arithmetic means in parentheses). This distance is significantly smaller than those in diaqua-bis(glycinato-O,N)nickel(II) [2.08 (1) \AA; Castellano, Nascimento \& Calvo, 1982], bis(glycinato- $N, O)\left(2,2^{\prime}-\right.$ bipyridyl- N, N^{\prime})nickel(II) 5.5 hydrate [2.081 (2) \AA; Žák, Głowiak, Kameníček \& Březina, 1990] or in nickel oxide [2.084 (1) \AA; Wyckoff, 1965]. Total bond valence of $\mathrm{Ni}-\mathrm{O}$ calculated according to Brown \& Altermatt (1985) equals 2.02 (theoretical value $=$ $2 \cdot 00$). The glycine molecule is in its zwitterionic non-planar form: the N atom lies $-0.335 \AA$ out of the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1-\mathrm{O} 2$ best plane located 0.002 , $-0.009,0.003$ and $0.003 \AA$ from the defining atoms (see e.g. Solans, Franco \& Miravitlles, 1985). A comparison of this structure with glycine (Jönsson \& Kvick, 1972) and triglycine sulfate (Solans, Franco \& Miravitles, 1985; Žukov, Tafejenko \& Fetisov, 1990) shows that the geometry of the amino acid is not significantly altered by coordination. The interplay among the distances and angles in the carboxylate group follows closely the relationships described by Borthwick (1980). Bond lengths and angles in the
sulfate anion are in the usual ranges. The O 12 atom in the water molecule is 4.939 (2) \AA from the Ni atom. The closest non- H atom of O 12 is $\mathrm{O}^{\mathrm{i}}(\mathrm{i}=\bar{x}$, $0.5+y,-0.5-z)$ located at a distance of $2 \cdot 694$ (2) \AA. An inspection of the crystal packing shows that the bonding between the complex cation and the sulfate anion is predominantly ionic with the shortest distance $\mathrm{O} 6-\mathrm{O} 9=2 \cdot 664$ (2) \AA. All H atoms of water molecules and of the NH_{3} group form hydrogen bonds with average distances and angles
 2.76 (8) $\AA, \mathrm{O}^{d}-\mathrm{H}^{d} \cdots \mathrm{O}^{a}=163(7)^{\circ}$ and $\mathrm{N}^{d}-\mathrm{H}^{d}=$ 0.91 (2), $\mathrm{H}^{d} \ldots \mathrm{O}^{a}=2.0$ (1), $\mathrm{N}^{d \ldots \mathrm{O}^{a}=2.89(10) ~} \AA$ and $\mathrm{N}^{d}-\mathrm{H}^{d} \ldots \mathrm{O}^{a}=166(10)^{\circ}(d$ indicates donor and a acceptor atoms).

References

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244 247.

Castellano, E. E., Nascimento, O. R. \& Calvo, R. (1982). Acta Cryst. B38, 1303-1305.
Jönsson, P.-G. \& Kvick, Å. (1972). Acta Cryst. B28, 1827-1833.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Solans, X., Franco, F. \& Miravitlles, C. (1985). Ferroelectrics, 62, 59-70.
WYCkoff, R. W. G. (1965). Crystal Structures, Vol. I, p. 89. New York: Interscience.
Žák, Z., GŁowiak, T., Kameniček, J. \& Březina, F. (1990). Acta Cryst. C46, 2073-2075.
Žukov, S. G., Tafejenko, V. A. \& Fetisov, G. V. (1990). Žh. Strukt. Khim. 31, 84-90.

Acta Cryst. (1991). C47, 2666-2668

Semicarbazones and Thiosemicarbazones. XIV. Bis(2-methylthiosemicarbazide)nickel(II) Nitrate

By J. Valdés-Martínez,* R. A. Toscano and R. Cea-Olivares
Instituto de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, DF 04510 Mexico

(Received 17 September 1990; accepted 25 June 1991)

Abstract

C}_{4} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{NiS}_{2} .2 \mathrm{NO}_{3}, M_{r}=393 \cdot 0\), triclinic, $P \overline{1}, a=7 \cdot 114$ (3),$b=7.760$ (2),$c=6.718$ (3) $\AA \AA, \alpha=$ $93 \cdot 10$ (3) $, \quad \beta=101.60(3), \quad \gamma=76 \cdot 49(3)^{\circ}, \quad V=$ $353.2 \AA^{3}, \quad Z=1, \quad D_{x}=1.85 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=1.85 \mathrm{~cm}^{-1}, F(000)=202, T=293 \mathrm{~K}$, final $R=0.046$ for 1180 reflections with $F>3 \sigma(F)$.

[^0]The $\mathrm{Ni}^{\mathrm{II}}$ ion lies in a square-planar environment in a trans configuration. The ligands are coordinated as bidentate through the S and hydrazine N atoms. The influence of the methyl group on $\mathrm{N}(2)$ is mainly reflected in the $\mathrm{Ni}-\mathrm{S}$ distance $[2 \cdot 177$ (1) \AA] which is longer, and the $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond lengths [1.894 (3) and 1.716 (4) \AA, respectively], which are shorter than those reported for similar compounds.
(C) 1991 International Union of Crystallography

Experimental. The title compound, $\quad \mathrm{Ni}(2-$ $\left.\mathrm{MeTSC})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$, was prepared by the reaction of [$\left.\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and 2-methylthiosemicarbazide in ethanol; suitable crystals were obtained by slow evaporation of the solution. Crystal $0.14 \times 0.26 \times$ 0.44 mm mounted on glass fiber. Nicolet $R 3$ fourcircle diffractometer, graphite-monochromated Mo $K \alpha$ radiation. Lattice parameters from 25 reflections with $5 \cdot 4<2 \theta<20 \cdot 4^{\circ}$. 1349 reflections measured (unique 1243, $R_{\text {int }} 0.01$) with $3<2 \theta<50^{\circ}$ for half sphere, of which 1180 had $F>3 \sigma(F)$ and were used in refinement. Index range $h: 0 \rightarrow 8, k: \pm 9, l$: $\pm 7 . \theta: 2 \theta$ scan mode, variable scan speed $\left(4-30^{\circ} \mathrm{s}^{-1}\right)$, scan width $2 \cdot 2+\left(K \alpha_{1}-K \alpha_{2}\right)^{\circ}$. Two standard reflections ($0 \overline{1} 1, \overline{1} \overline{1} 2$) monitored every 50 measurements; no significant variation. Lp corrections. Structure solved by heavy-atom method. Least-squares refinement (on F) of all non-H atoms anisotropic; H atoms of CH_{3} group and $\mathrm{N}(1)$ atom riding on bonded C and N, H atoms attached to $\mathrm{N}(3)$ found on difference Fourier map at an advanced stage of

Fig. 1. The molecular conformation of $\left[\mathrm{Ni}(2 \mathrm{MeTSC})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$, showing the atom numbering.

Fig. 2. The crystal structure of $\left[\mathrm{Ni}(2 \mathrm{MeTSC})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$. Broken lines indicate hydrogen bonds.

Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	x	y	z	$U_{\text {eq }}$
Ni	10000	0	10000	25 (1)
S(1)	8433 (1)	-1163 (1)	7342 (1)	33 (1)
O(1)	2210 (5)	4101 (4)	9615 (7)	76 (2)
O(2)	5306 (6)	3207 (7)	10726 (7)	96 (2)
O(3)	4021 (9)	2735 (6)	7682 (7)	102 (2)
$\mathrm{N}(1)$	6821 (5)	585 (5)	3940 (5)	39 (1)
N(2)	8284 (5)	2184 (4)	6547 (5)	31 (1)
N(3)	9080 (5)	2214 (4)	8669 (5)	31 (1)
$\mathrm{N}(4)$	3844 (4)	3313 (4)	9380 (4)	34 (1)
C(1)	7802 (5)	662 (5)	5809 (5)	28 (1)
$\mathrm{C}(2)$	7779 (7)	3852 (5)	5471 (6)	45 (1)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Ni}-\mathrm{S}(1)$	2.177 (1)	$\mathrm{Ni}-\mathrm{N}(3)$	1.894 (3)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.716 (4)	$\mathrm{O}(1)-\mathrm{N}(4)$	$1 \cdot 217$ (5)
$\mathrm{O}(2)-\mathrm{N}(4)$	$1 \cdot 223$ (5)	$\mathrm{O}(3)-\mathrm{N}(4)$	$1 \cdot 222$ (6)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.313 (4)	$\mathrm{N}(2)-\mathrm{N}(3)$	1.425 (4)
$\mathrm{N}(2)-\mathrm{C}(1)$	$1 \cdot 348$ (5)	$\mathrm{N}(2)-\mathrm{C}(2)$	1.451 (5)
$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{N}(3)$	87.9 (1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	120.3 (3)
$\mathrm{Ni}-\mathrm{S}(1)-\mathrm{C}(1)$	97.4 (1)	$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(1)$	116.0 (3)
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	$117 \cdot 3$ (3)	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$125 \cdot 9$ (3)
$\mathrm{Ni}-\mathrm{N}(3)-\mathrm{N}(2)$	117.0 (2)	$\mathrm{O}(1)-\mathrm{N}(4)-\mathrm{O}(2)$	$122 \cdot 3$ (4)
$\mathrm{O}(1)-\mathrm{N}(4)-\mathrm{O}(3)$	117.7 (4)	$\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{O}(3)$	119.8 (4)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$120 \cdot 2$ (3)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	119.6 (2)

anisotropic refinement and their coordinates refined; all H atoms assigned fixed isotropic temperature factor, $U=0.06 \AA^{2} . \sum w(\Delta F)^{2}$ minimized, $w=\left[\sigma^{2}\left(F_{o}\right)\right.$ $\left.+g\left(F_{o}\right)^{2}\right]^{-1}$, with final $g=0.003$ (where g is a 'fudge factor' refined each cycle to prevent unrealistic weight). In the last cycle $(\Delta / \sigma)_{\text {max }}=0.025$; residual electron density within -0.70 to 0.93 e \AA^{-3}; final R $=0.046$ and $w R=0.060, S=1.345$. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). All computations performed on a Nova 45 with SHELXTL (Sheldrick, 1983). The shape of the molecule and the atomic numbering are indicated in Fig. 1.* The packing of the molecules in the unit cell is shown in Fig. 2. Final atomic parameters are given in Table 1 and bond distances and angles in Table 2.

Related literature. The crystal and molecular structure of $\mathrm{Ni}^{\text {II }}$ dithiosemicarbazide sulfate has been reported (Grönbæk \& Rasmussen, 1962; Hazell, 1968). The so-called α-isomer is a trihydrate with a trans-planar structure [$\mathrm{Ni}-\mathrm{S}$ length $2 \cdot 16$ (1) \AA]

[^1](Grönbæk \& Rasmussen, 1962). The β-isomer contains two independent sets of complex ions, one of cis- and another of trans-planar configuration (Hazell, 1968). The $\mathrm{Ni}-\mathrm{S}$ bond of the cis complex is significantly shorter than that of the trans complex [$2 \cdot 149$ (1) and 2.169 (1) \AA, respectively]. The molecular structures of cis and trans nickel dithiosemicarbazide dinitrate have been determined [Hazell (1972), $\mathrm{Ni}-\mathrm{S}$ bond lengths $2 \cdot 150$ (5) and $2 \cdot 185$ (1) $\AA \AA$ respectively].

We thank R. Villena for data collection and M. Torres and R. Patiño for technical assistance.

References

GrönbÆk, R. \& Rasmussen, S. E. (1962). Acta Chem. Scand. 16, 2325-2336.
Hazell, R. G. (1968). Acta Chem. Scand. 22, 2171-2182.
Hazell, R. G. (1972). Acta Chem. Scand. 26, 1365-1374.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1991). C47, 2668-2669

2-Thia[3]ferrocenophane S-Oxide

By Mark S. Erickson, Yanhu Yu, Frank R. Fronczek and Mark L. McLaughlin* Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 22 April 1991; accepted 2 July 1991)

Abstract

Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SOCH}_{2}-\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], \quad M_{r}=\) 260.1, $P 2_{1} / c, \quad a=13.195$ (2), $\quad b=7.476$ (2), $\quad c=$ 10.541 (2) $\AA, \beta=95.00$ (2) ${ }^{\circ}, V=1035.9$ (7) $\AA^{3}, Z=$ $4, D_{x}=1.668 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $16.13 \mathrm{~cm}^{-1}, F(000)=536, T=299 \mathrm{~K}, R=0.028$ for 2465 observed data (of 3017 unique data). The η^{5} cyclopentadienyl ligands each exhibit a maximum deviation of 0.006 (2) \AA from planarity. The bridging C atoms lie out of these planes by 0.114 (2) and 0.079 (2) \AA toward Fe . The Fe atom lies 1.635 (1) \AA from each plane. The two rings form a dihedral angle of $5.9(5)^{\circ}$, and the Cp centroid- $\mathrm{Fe}-\mathrm{Cp}$ centroid angle is 175.7°. The $\mathrm{S}=\mathrm{O}$ distance is 1.501 (2) \AA.

Experimental. The title compound (1) was prepared by 3 -chloroperbenzoic acid oxidation of 2 -thia[3]ferrocenophane (Ando, Hanyu, Kumamoto \& Takata, 1986) and recrystallized from refluxing ethanol to afford yellow-orange needles, m.p. 474.5-475 K.

(1)

A needle fragment of dimensions $0.28 \times 0.38 \times$ 0.45 mm , was used for data collection on an EnrafNonius CAD-4 diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. Cell dimensions

[^2]were determined at 299 K by a least-squares fit to setting angles of 25 reflections having $19>\theta>12^{\circ}$. One quadrant of data having $1<\theta<30^{\circ}, 0 \leq h \leq$ $18,0 \leq k \leq 10,-14 \leq l \leq 14$ was measured by $\omega-2 \theta$ scans at speeds ranging from 0.45 to $4.0^{\circ} \mathrm{min}^{-1}$ to measure all significant data with approximately equal precision. Three standard reflections ($500,040,004$) exhibited only a random fluctuation in intensity so no correction for decay was applied. Data reduction included corrections for background, Lorentz, polarization and absorption. Absorption corrections were based on ψ scans, with maximum transmission coefficients 91.56%.

The space group was determined by systematic absences $h 0 l$ with l odd, and $0 k 0$ with k odd. The structure was solved by heavy-atom methods and refined by full-matrix least squares based on F, with weights $w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius Structure Determination Package (Frenz, 1980), scattering factors of Cromer \& Waber (1974), anomalous coefficients of Cromer (1974), and data having $I>3 \sigma(I)$. Heavy-atom coordinates were refined with anisotropic thermal parameters; H -atom coordinates were located by ΔF synthesis and were refined with isotropic thermal parameters. Final $R=$ 0.028 ($R=0.041$ for all 3017 data), $w R=0.038, S=$ 1.810 for 185 variables. Largest shift was 0.02σ in the final cycle, maximum and minimum residual density 0.45 and $-0.37 \mathrm{e} \AA^{-3}$, extinction coefficient $g=8.9(5) \times 10^{-7}$, where the correction factor ($1+$ $\left.g I_{c}\right)^{-1}$ was applied to F_{c}.

The fractional coordinates of the title compound are given in Table 1. Fig. 1 is a perspective drawing showing the atom numbering, and Fig. 2 is a unit-

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and hydrogen bonds and short contacts have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54387 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

